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Compressed Sensing in Sodium Magnetic
Resonance Imaging: Techniques,

Applications, and Future Prospects
Qingping Chen, MSc,1,2,3 N. Jon Shah, PhD,1,4,5,6 and Wieland A. Worthoff, PhD1*

Sodium (23Na) yields the second strongest nuclear magnetic resonance (NMR) signal in biological tissues and plays a vital
role in cell physiology. Sodium magnetic resonance imaging (MRI) can provide insights into cell integrity and tissue viability
relative to pathologies without significant anatomical alternations, and thus it is considered to be a potential surrogate bio-
marker that provides complementary information for standard hydrogen (1H) MRI in a noninvasive and quantitative man-
ner. However, sodium MRI suffers from a relatively low signal-to-noise ratio and long acquisition times due to its relatively
low NMR sensitivity. Compressed sensing-based (CS-based) methods have been shown to accelerate sodium imaging
and/or improve sodium image quality significantly. In this manuscript, the basic concepts of CS and how CS might be
applied to improve sodium MRI are described, and the historical milestones of CS-based sodium MRI are briefly pres-
ented. Representative advanced techniques and evaluation methods are discussed in detail, followed by an expose of clin-
ical applications in multiple anatomical regions and diseases as well as thoughts and suggestions on potential future
research prospects of CS in sodium MRI.
Evidence Level: 5
Technical Efficacy: Stage 1
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Sodium (23Na) is the second most abundant nucleus
observable with magnetic resonance in biological tissues,

surpassed only by the hydrogen nucleus (1H). Sodium plays a
pivotal role in the human body and has an important func-
tion in maintaining the homeostasis of organisms through
osmoregulation and pH regulation.1 In addition, it is
involved in cell physiology through the regulation of sodium–

potassium pumps, whose main purpose is to maintain the
transmembrane sodium and potassium gradients by extruding
three sodium ions from the cell while transferring two potas-
sium ions into the cell and simultaneously consuming energy
provided by adenosine triphosphate (ATP) hydrolysis.2 The
impairment of tissue energy metabolism or the disruption of
cell membrane integrity causes an increase in intracellular
sodium concentration (10–15 mmol/L), while the

extracellular sodium concentration (140–150 mmol/L)
remains constant due to tissue perfusion.3–5 Therefore, a dis-
turbance in the balance between intra- and extracellular
sodium concentration is considered to be a sensitive early
indicator of some diseases.4 For example, when the activity of
the sodium–potassium pumps is reduced due to insufficient
ATP supply, for example, during ischemia,6 the pumps can-
not expel the influxive sodium properly, and thus an increase
in intracellular sodium concentration can be observed.

Sodium magnetic resonance imaging (MRI) is the only
noninvasive imaging technique that enables the absolute spa-
tial quantification of sodium concentration in living tissues. It
can provide direct biochemical information for cell integrity
and tissue viability with little or no macroscopic alterations,
making it useful for tracking temporal changes in tissue
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viability during a course of treatment and giving it the poten-
tial to become a biomarker for early preventive diagnosis in
clinical practice.4 Initial demonstrations of the feasibility of
sodium MRI in the human body date back to the early
1980s.7,8 With the availability of stronger magnetic fields
(≥3 T) as well as advancements in acquisition strategies and
hardware, the potential of sodium MRI has been investigated
in many recent studies across a variety of diseases, ranging
from brain tumors,9,10 multiple sclerosis,11,12 stroke,13

osteoarthritis,14 and breast cancer,15,16 to nephropathy,17 and
others.4,5

However, compared to conventional hydrogen MRI,
sodium MRI has to surmount a number of hurdles if it is to
enter routine clinical practice. In particular, the interrelated
issues of relatively low signal-to-noise ratio (SNR) and long mea-
surement times (usually exceeding 10 minutes) due to the low
relative sensitivity of sodium nuclear magnetic resonance
(NMR) compared to hydrogen (approximately 9.2%)3 remain
problematic, even when imaging is conducted at ultra-high
fields.18 These issues emerge from the fact that the gyromagnetic
ratio of sodium is approximately 4-fold lower than that of
hydrogen; the nuclear spin of sodium takes a value of 3/2 com-
pared to 1/2 for hydrogen and hence exhibits a nuclear
quadrupolar moment, and sodium concentration in vivo is
approximately 2000 times lower than that of hydrogen. Further-
more, the interaction of the nuclear quadrupolar moment with
the electric field gradients originating from the electronic distri-
bution surrounding the nucleus in biological tissues results in a
biexponential relaxation behavior, causing relatively fast decay of
the sodium NMR signal.19,20 A short transversal relaxation com-
ponent, typically less than 5 msec, commonly constitutes about
60% of the signal, while the long component, typically ranging
from 15 msec to 30 msec, contributes about 40% of the signal,
favoring ultra-short echo time (UTE) imaging techniques for the
detection of both components.4 In contrast, the quadrupolar
interaction is averaged to zero in a homogenous environment
such as a fluid, and therefore the transverse relaxation of sodium
NMR signal proceeds as a relatively slow mono-exponential
decay.4,19,20

Fortunately, a variety of highly efficient acquisition tech-
niques and delicate reconstruction approaches have been devel-
oped to enhance image quality and/or reduce the acquisition
times of MRI scans by means of k-space undersampling. For
example, parallel imaging can accelerate measurements with
multichannel receiver coils by utilizing coil sensitivity variations
in conjunction with a smaller number of gradient encoding
steps.21–23 However, the wide application of parallel imaging in
sodium MRI is currently hindered by the limited availability of
phased-array sodium-tuned coils. An alternative method applica-
ble for accelerating single-channel coil scans is compressed sens-
ing (CS), which is based on the principle that an image with a
sparse representation in a known transform domain can be
recovered from incoherently undersampled k-space data by

means of a nonlinear iterative reconstruction.24,25 MRI agrees
well with this principle as MRI scanners naturally acquire the
Fourier-encoded raw data instead of pixel samples and MRI
images are naturally compressible in some transform domains.
More importantly, due to the biexponential relaxation behavior
with a fast T2 value typically less than 5 msec in biological tis-
sues, sodium MRI usually employs non-Cartesian UTE sam-
pling schemes, such as radial26 or spiral27,28 acquisitions,
achieving the incoherent undersampling required by CS. Ever
since Madelin et al demonstrated the applicability of CS in
sodium MRI in a study of human knee cartilage,29 CS has been
increasingly applied to sodium imaging of the brain,30–32 skeletal
muscle,33,34 breasts,15,35 and human torso.36 Recent efforts have
been made to further advance CS sodium MRI by incorporating
methods such as dictionary-based learning,36,37 prior hydrogen
anatomical constraint,32 parallel imaging,38 or deep learning.39

As an emerging technique, CS has great potential in further
facilitating the clinical applicability of sodium MRI by, for
example, applying advanced incoherent undersampling
methods,27,40,41 or by accelerating intracellular sodium
mapping,42,43 quantitative relaxometry,9,10,44 and dynamic
sodium MRI.45,46

Sodium MRI methods and applications have been
extensively reviewed elsewhere,4,5,47,48 and there are multiple
reviews on the CS techniques and applications in hydrogen
MRI.49–53 However, to the best of the authors’ knowledge,
sodium MRI with the incorporation of CS has not yet been
thoroughly reviewed. In light of the above, this article offers a
review of CS-based sodium MRI over the last decade, focus-
ing on advanced techniques, clinical applications, and poten-
tial future research prospects.

Basic Principles for the Application of
Compressed Sensing to Sodium MRI
Biomedical images, for example, sodium MRI images, are natu-
rally compressible with little or no perceptual loss of informa-
tion. Conventionally, image compression is performed following
image acquisition in order to save storage space and transfer
time. The image content is transformed into a vector of sparse
coefficients by compression tools, such as discrete cosine trans-
form (DCT) or wavelet transform, and a standard compression
strategy is used to encode the few significant coefficients and dis-
card the most negligible or unimportant coefficients, thus
enabling near-perfect reconstruction of the original data. As
sodium MRI suffers from relatively low image quality and long
measurement times, reducing measurement time without signifi-
cant degradation of the image quality is crucial for sodium MRI
to become clinically feasible. This naturally raises the following
question: Can one directly measure only the compressed infor-
mation in sodium MRI, while maintaining most of the
reconstructed image quality? Note that the MRI system natu-
rally acquires Fourier-encoded coefficients (i.e. k-space samples)
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rather than pixels, DCT, or wavelet coefficients. The acquired
demodulated signal in the MRI system is subject to the follow-
ing form of Fourier integral:

s tð Þ/
ð
Mxy r!, t ¼ 0

� � � e�i k
!

tð Þ: r!d r!, ð1Þ

where s tð Þ is the acquired MRI signal after demodulation, r!

is the coordinate of the spatial domain, M xy r!, t ¼ 0
� �

is the
transverse magnetization of the object immediately after

radiofrequency pulse excitation, and k
!

tð Þ is the k-space
coordinate.

Therefore, the above question can be restated: Is it possi-
ble to reconstruct sodium MRI images without significant visual
loss by measuring a small subset of the k-space? Fortunately, the
mathematical theory of CS published by Donoho54 and Candès
et al24,25 clears the path for accelerated sodium MRI. According
to the mathematical results, three ingredients are required for
the application of CS to sodium MRI: 1) transform sparsity to
separate and remove the noise from the desired image content,
2) incoherent undersampling to speed up data acquisition and
avoid distinct aliasing artifacts, and 3) nonlinear iterative recon-
struction to balance sparse representation of the desired image
and data consistency of the acquired k-space data. As shown in
Fig. 1, a sparse representation can be obtained by applying a
sparsifying transform exemplified by a wavelet transform. A
nonlinear iterative reconstruction is performed by leveraging, for
example, the nonlinear conjugate gradient approach.55 An image

is updated in the (i + 1)th iteration by feeding a conjugate gra-
dient, which contains the information of the ith sparse domain
as well as the difference between the measured k-space and the
ith k-space, thus promoting image sparsity and data consistency.
When the conjugate gradient or the number of iterations reaches
the stopping criteria set by the user, the iteration loop is broken,
and the final image is produced. The following subsections dis-
cuss the three fundamental requirements for the implementation
of CS to sodium MRI in more detail.

Transform Sparsity
A vector can be said to be “sparse” provided that most of its
coefficients are equal to zero and only a few coefficients con-
tain all of the information. From a signal processing perspec-
tive, most energy from a sparse signal is contained within a
few measurements, while the remaining measurements are
zero or negligible. In mathematical terms, transform sparsity
produces a sparse vector after a specific mathematical transfor-
mation and can be defined as follows: If an unknown signal
with m samples is a vector, x �Cm, which can be expressed
in terms of an orthonormal basis set (ψ i: i = 1, …, m) for
Cm (e.g. orthonormal wavelet basis), as follows:

θi ¼ψ ix, i¼ 1,…,m or θ¼Ψx ð2Þ

where θ�Cm is the transform coefficient set of x; the ortho-
normal basis set (ψ i: i = 1, …, m) in matrix form,
Ψ �Cm�m, is also called sparsifying transform operator.

FIGURE 1: A simplified schematic of the fundamentals of compressed sensing. Randomly undersampled k-space datasets are
acquired (top left); their inverse Fourier transformation results in an image with incoherent artifacts. A sparse representation is
obtained by employing wavelet transform. The gray box shows a nonlinear iterative reconstruction using a nonlinear conjugate
gradient method. An image is updated by feeding a conjugate gradient, which is calculated based on k-space consistency and
sparse domain information. When the conjugate gradient or the number of iterations reaches a set stopping criteria, the iteration
loop is broken, and the final image is produced. Fu: undersampled Fourier transform operator, F*

u: inverse undersampled Fourier
transform operator, Ψ : sparsifying transform operator. Source: Figure reproduced from reference 55, with permission from John
Wiley and Sons (License No. 5147660427238).
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Then, the signal, x, is said to be k-sparse if only k elements
of θ are nonzeroes k�mð Þ, while the remaining m� kð Þ ele-
ments are zeroes (as shown in Fig. 2a).

Sparsifying transform projects an image into a sparse
domain based on a number of transform coefficients, thus
suggesting the number of measurements required for an exact
reconstruction. However, choosing the right transform tool to
exploit sparsity for a particular class of MRI images is a challeng-
ing task and an ongoing research area. Fixed sparsifying trans-
form operators are frequently employed in sodium MRI, such as
wavelets,30 finite differences,15,33,37 or the orthogonal DCT.30

Moreover, it is possible to perform sparse representation of
sodium images based on a trained dictionary,33,34,36,37 or
others.33,39

Incoherent Undersampling
An essential requirement for CS is that the aliasing artifacts
produced by k-space undersampling due to the Nyquist
constraint violation are incoherent (i.e. noise-like) in the

image domain since it is impossible to distinguish between
signal and aliasing in the case of the undersampling not
being random. In light of the fast biexponential relaxation
behavior of the sodium nucleus, non-Cartesian UTE k-
space trajectories are usually employed in sodium MRI,
such as 3D radial,56 stack of spirals,57 density-adapted 3D
projection,58 twisted projection imaging (TPI),40,41 flexible
TPI,59 3D cones,60 and Fermat looped, and orthogonally
encoded trajectories (FLORET).27 Generally, incoherent
undersampling is achieved by randomly skipping a subset
of phase-encode lines in Cartesian sampling or projections
in non-Cartesian sampling (as shown in Fig. 3), such as
variable-density sampling schemes,61,62 leading to a reduc-
tion in MRI scan times. The artifacts produced by incoher-
ent undersampling show a noise-like behavior in the image
domain and even more so in an appropriately selected
sparse domain. It has been reported that 3D non-Cartesian
sampling, such as FLORET (Fig. 3f), provides better spar-
sity and hence yields greater CS performance than tradi-
tional 2D Cartesian sampling with incoherently
undersampled phase-encodes and fully sampled readouts
(Fig. 3a). This makes 3D non-Cartesian sampling an excel-
lent candidate for CS-based reconstruction.49,55

Nonlinear Iterative Reconstruction
In the case of the undersampling described above, only n lin-
ear measurements (n <m) of the unknown signal, x �Cm,
with m samples, are acquired and can be expressed in the fol-
lowing form:

yi ¼ aix, i¼ 1,…,n or y¼Ax, ð3Þ

where ai �Cm is a known sampling vector in the ith measure-
ment; A�Cn�m is the sampling matrix of dimension n�m;
and y �Cn is the measured dataset with n samples from n
measurements by applying the sampling matrix, A. A more
intuitive interpretation of undersampling is shown in Fig. 2b.
Of particular interest is the exact recovery of signal x in the
vastly undersampled case, where the number of unknowns
(m) is much larger than that of the observations (n), which
might seem impossible at first glance. Candès et al24,25,63 pro-
posed that the signal of interest, x, can be exactly recovered
by solving the ℓ1-convex problem:

min
x

xk k1 subject to y¼Ax, ð4Þ

where the ℓ1-norm is the sum of the magnitudes of vector x,
provided that the sampling matrix, A, has the restricted isom-
etry property.25 More specifically, for a given restricted isome-
try constant, δ2k, a sampling matrix, A, is said to have a
k-restricted isometry property if it satisfies the following con-
dition for all k-sparse vectors x1 and x2 for Cm:

FIGURE 2: Basic principles of sparse representations.
(a) Transform sparsity produces a set of sparse transform
coefficients, θ, with k non-zero elements after a sparsifying
transform, Ψ , operating on a signal, x. (b) An m�1 k-sparse
signal can be transformed into an n�1 set of measurements, y,
through an n�m sampling matrix, A (k�n<m). The colors
represent the values of the elements in the matrices. The
elements of θ in white are zeros.
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1�δ2kð Þ x1� x2k k22 ≤ Ax1�Ax2k k22 ≤ 1þδ2kð Þ x1� x2k k22:
ð5Þ

It has been found that there is a high probability of satisfying
the requirements of the restricted isometry property if the
undersampling pattern is incoherent and if the number of
measurements is above a given constant that is determined
according to the number of samples, m, and the sparsity
value, k.63

In clinical practice, the signal x is usually projected into
a specific domain to increase its sparsity as much as possible,
thereby reducing the number of unknowns to achieve near-
optimum image reconstruction, as shown in the following
unconstrained formula adapted from Eq. 4:

bx¼ argmin
x

Ψxk k1þ λ y�Axk k22
� �

, ð6Þ

where x is the iteratively generated image, bx is the
reconstructed image, y is the acquired k-space data, A is the
Fourier transform operator, Ψ is the sparsifying transform
operator such that Ψx becomes sparse, and λ is the regulariza-
tion parameter to balance the ℓ1-norm and ℓ2-norm. Mini-
mizing the ℓ1-norm of the transform coefficients promotes
sparsity, while the ℓ2-norm constraint of the measured data
ensures data consistency. In other words, out of all the poten-
tial solutions consistent with the measured data, Eq. 6 finds
one that is compressible by transform Ψ . In addition, it is
well-documented that the total variation (TV) norm, which is
essentially the ℓ1-norm of the variations of neighboring pixels
or voxels, can promote image restoration because the finite

difference operator can play a role as an edge-preserving filter
to smooth regions with constant intensity.64 Thus, to enforce
the image sparsity both in the transform domain and in the
finite-difference domain, a certain amount of TV penalty can
be added to Eq. 6, as follows:

bx¼ arg min
x

αTV xð Þþ Ψxk k1þ λ y�Axk k22
� �

, ð7Þ

where α is the weighing factor for the TV penalty.
In addition to the aforementioned three fundamental

requirements, there are several practical limitations and/or con-
siderations when applying CS to sodium MRI. One of the limi-
tations is that sodium MRI has relatively weak image sparsity
due to the high noise contamination of sodium images. The
concept of compressibility is introduced to quantify image spar-
sity, which is defined as the percentage of specified transform
coefficients required to generate an image comparable to the
fully sampled original image. It has been reported that the
hydrogen images of the human head can be compressed up to
1.6%, while the corresponding sodium images only provide a
compressibility of 72%.65 In light of this, advanced techniques
are often employed to promote the sparsity of sodium images.
Second, center-out non-Cartesian sampling schemes often used
in sodium MRI for incoherent undersampling require rapid
switching of gradients and are therefore sensitive to hardware
system imperfection. This can result in eddy currents, gradient
delays, and related artifacts. Finally, CS has the potential to
improve SNR and/or image resolution, whereas this may result
in the loss of low-contrast features. Hence, the trade-off between
these two factors must be taken into consideration.

FIGURE 3: k-space trajectories with 2-fold incoherent undersampling. Phase-encodes or projections in gray are skipped, while red
ones are sampled. (a) 2D Cartesian trajectories with incoherently undersampled phase-encodes and fully sampled readouts. (b–f) 3D
non-Cartesian UTE k-space trajectories often used in sodium MRI: (b) 3D radial, (c) stack of spirals, (d) 3D cones, (e) twisted
projection imaging, and (f) Fermat looped, orthogonally encoded trajectories.
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Historical Milestones
Five years after Lustig et al demonstrated the applicability of CS
in hydrogen MRI for the first time,55 Madelin et al proved the
applicability of CS in sodium MRI by successfully halving the
scan time required for imaging knee cartilage at 7 T without sig-
nificant loss of accuracy in total sodium concentration (TSC).29

Although CS sodium MRI is still considered an emerging tech-
nique, it has made significant progress in the past decade, as
shown in the list of publications given in Table 1, which is, to
the best of our knowledge, a complete list of all publications
relating to CS-based sodium MRI to this date. Following the

work of Madelin et al,29 Gnahm et al optimized the CS sodium
MRI technique by combining its TV regularization with prior
high-resolution anatomical information from hydrogen MRI,
resulting in a substantial increase in SNR and enhanced contrast
of structures in the sodium MRI images.31,32 In addition to the
standard ℓ1-norm and TV penalty, several innovative sparsity
regularizations have been employed for the application of CS
to sodium MRI, such as second-order TV and dictionary-
based learning.15,37,68,70 Lachner et al pioneered the combi-
nation of parallel imaging with CS sodium MRI in a study
on female breast imaging using a multichannel phased-array

TABLE 1. Publications Relating to Compressed Sensing-Based Sodium MRI

Year Publication Sampling Scheme Regularization USF B0 (T) Anatomical Region

2012 Madelin et al29 3D radial No sparsifying transform
(one subject: DCT)

2 7 Knee cartilage
(asymptomatic)

2014 Gnahm et al32 DA-3DPR TV with anatomical prior 2 3 Brain (healthy)

2015 Weingärtner
et al65

CSI Anatomical prior with phase
homogeneity constraint

3 3 Brain (ischemic stroke)

2015 Maguire et al66 CSI Wavelet, TV 3 9.4 Mouse heart

2015 Gnahm et al31 DA-3DPR TV with anatomical prior 4 7 Brain (multiple
sclerosis)

2016 Behl et al37 DA-3DPR TV, DL 9 7 Brain (healthy)

2018 Platt et al36 DA-3DPR DL 1 7 Human torso (healthy)

2019 Blunck et al30 3D radial TV, wavelet, DCT 4 7 Brain (healthy)

2019 Lachner et al15 DA-3DPR TV with anatomical prior 7.2 7 Female breasts
(healthy)

2020 Utzschneider et
al34

DA-3DPR DL 4.4 3 Skeletal muscle
(healthy)

2020 Regnery et al67 DA-3DPR DL - 7 Brain (glioma)

2020 Lachner et al38 DA-3DPR TV with SENSE and
anatomical prior

7.2 7 Female breasts
(healthy)

2020 Kratzer et al68 2D DA radial DL 21 7 Brain (healthy)

2021 Utzschneider
et al33

DA-3DPR, DA-
SOS

TV, DL, TV-BL 4.1 7 Skeletal muscle
(healthy)

2021 Adlung et al39 DA-3DPR Convolutional neural
networks

4 7 Brain (ischemic stroke)

2021 Zhao et al69 Flexible TPI TV with anatomical prior 1 3 Brain (healthy and
high-grade tumor)

2021 Kratzer et al70 3D DA radial DL 2 7 Brain (healthy)

USF = undersampling factor for acceptable image quality; DCT = discrete cosine transform; DA-3DPR = density-adapted 3D radial;
TV = total variation; CSI = chemical shift imaging; DL = dictionary-based learning; SENSE = sensitivity encoding; DA
radial = density-adapted radial; DA-SOS = 3D acquisition-weighted density-adapted stack-of-stars sampling scheme; TV-BL = total
variation CS with 4D block-matching prior; TPI = twisted projection imaging.
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sodium/hydrogen double-tuned coil and found that the incor-
poration of parallel imaging improved CS reconstruction with
higher image quality.38 More recently, Adlung et al provided
proof for the first time that convolutional neural networks in
the field of deep learning were able to reconstruct 4-fold
undersampled sodium MRI images with loss functions acting
as regularizations while maintaining SNR and TSC quantifi-
cation accuracy for ischemic stroke patients.39 The majority
of the research relating to CS-based sodium MRI have been
conducted at an ultra-high field strength of 7 T using various
forms of 3D radial sampling schemes with undersampling fac-
tors (USFs) ranging from 2 to 10. The effects of sparse recon-
struction on the quantitation of TSC and relaxometry have
been investigated in multiple studies.30,34,39,68–70 Further
to UTE sequences using non-Cartesian k-space trajectories,
the chemical shift imaging (CSI) sequence71 without read-
out gradients was shown to be a feasible modality for CS
sodium MRI by Weingärtner et al, by using iterative
reconstruction with the aid of an object support constraint
from hydrogen MRI and a phase-homogeneity con-
straint.65 Furthermore, Maguire et al demonstrated the
capability of CS to accelerate sodium magnetic resonance
spectroscopic imaging using a CSI sequence, achieving
3-fold acceleration without losing accuracy of the myocar-
dial sodium concentration maps for mouse hearts in vivo at
9.4 T.66

Advanced Techniques in Compressed Sensing-
Based Sodium MRI
Although the benefits of conventional CS have been dem-
onstrated in terms of shortening the scan times and/or
improving image quality in sodium MRI, many challenges
impede its full potential and limit its clinical translation.
First, conventional CS typically demands complex iterative
algorithms for solving non-linear optimization problems,

resulting in clinically infeasible computational times (usu-
ally in hours). Second, the manually chosen transform
domain, such as wavelet or finite difference, may not accu-
rately model the sparse representation of the target data,
therefore leading to artifacts. Finally, conventional CS
reconstruction performance is sensitive to the tuning of
extensive regularization parameters that heavily depend on
the type of image, sparsifying transform, sampling

trajectories, patients, and so on, making the manual tuning
of parameters a difficult task in practice. In the following,
four advanced techniques to mitigate these challenges and
thus to improve the performance of CS in sodium MRI are
introduced in detail.

Dictionary-Based Learning
A dictionary is essentially a matrix of values that can be
employed as a sparsifying transform in a CS reconstruction.
Common sparsifying transforms, such as wavelet, DCT, and
finite difference, have a fixed and analytic form of dictionary
and work by employing an orthonormal basis set, enabling
fast and straightforward implementation of CS by zeroing out
most of the transform coefficients. However, these transforms
are only suitable for a specific class of signals in the MRI data
at best and do not optimally represent other signals due to
the involved simplistic and rigid sparsifying algorithms. Con-
sequently, data-adapted (i.e. learned) transforms are essential
for dealing with a vast range of signals. These can yield
sparser representations than fixed transforms since their dic-
tionaries are learned separately for every image instance.72,73

Common dictionary-based learning techniques include patch-
based methods74 and magnetic resonance fingerprinting
(MRF).75

Ravishankar and Bresler proposed a novel framework
for the application of patch-based dictionary-based learning
to hydrogen MRI, which can learn the dictionary iteratively
and simultaneously reconstruct the MRI image from highly
undersampled k-space data.74 Behl et al introduced this
framework to sodium MRI and extended the dimensionality
of the dictionary patch from 2D to 3D within acceptable
reconstruction times in light of the relatively low image reso-
lution of sodium MRI.37 In the context of sodium MRI, the
following minimization problem based on Eq. 7 has to be
solved iteratively:

where x �CN�1 is the iteratively reconstructed image of sizeffiffiffiffiffi
N3

p � ffiffiffiffiffi
N3

p � ffiffiffiffiffi
N3

p
voxels, A is the Fourier transform opera-

tor, and y is the measured k-space data. Rijk �Cn�N is an
operator that extracts a patch of interest from image x as

x ijk ¼Rijkx of size
ffiffiffi
n3

p � ffiffiffi
n3

p � ffiffiffi
n3

p
voxels. αijk �CK�1 is a

sparse representation of the image patch, xijk �Cn�1, with

respect to the dictionary, D�Cn�K, K �N . The first term

bD,bαijk,bxn o
¼ arg min

D,αijk ,x

X
ijk

μijk αijk
�� ��

0þ
X
ijk

Dαijk�Rijkx
�� ��2

2þλ y�Axk k22

8<:
9=;, ð8Þ
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promotes the sparsity of the dictionary-based patch represen-

tation, αijk, where the ℓ0-norm, αijk
�� ��

0, is the total number

of nonzero elements in vector αijk. The second term enforces
the consistency of the reconstructed image patch, Rijkx, and
its dictionary-based approximation, Dαijk. The third term
ensures the data fidelity in k-space. Behl et al showed that the
3D patch-based dictionary-based learning reconstruction is
superior to the conventional nonuniform fast Fourier trans-
form (NUFFT) and other CS reconstructions using non-
adaptive sparsifying transforms (eg finite difference).37 This is
especially the case for moderate undersampling (Fig. 4) and is
in line with another study on imaging the skeletal muscles of
healthy volunteers using a USF of 4.1 by Utzschneider
et al.33

MRF, a recently proposed dictionary-based approach,
produces a unique signal evaluation (i.e. fingerprint) from
various tissues or materials by employing an incoherently
undersampled acquisition, which is matched to a
predefined dictionary of predicted signal evaluations for
multiparametric quantification in hydrogen MRI.75 In

accordance with patch-based dictionary-based learning, the
idea of MRF is that a single element in a sparse set of dic-
tionary elements can be used to represent the time course
of each pixel, depending on relaxometry and other parame-
ters. Kratzer et al first proved the feasibility of MRF in the
simultaneous quantification of sodium relaxometry and B0

inhomogeneity within 1 h in a preliminary study68 and
further halved the scan time to achieve time-efficient 3D
in vivo relaxometric mapping.70

The transition from nonadapted image sparsity to
adapted dictionary-based sparsity is attractive for sodium MRI
since the adapted dictionaries can capture small image features
and remove artifacts effectively without sacrificing image reso-
lution. However, this comes at the expense of a highly noncon-
vex optimization problem, which is often associated with high
computational complexity and long reconstruction times due
to challenging theoretical analyses and convergence guarantees.
Although the previously trained dictionary might be reutilized,
each reconstruction task has to solve a new optimization prob-
lem, resulting in a great computational burden.

FIGURE 4: Sodium MRI images of a healthy human brain with a nominal resolution of 1.7 mm3 reconstructed using (a) NUFFT, (b) CS
with a TV regularization, and (c) the adaptive 3D dictionary-based CS algorithm. The raw data were acquired with a USF of 9 and an
average of 5. The adapted 3D dictionary-based learning CS is less affected by noise and can restore small structures more accurately
than other reconstruction approaches (eg in the cerebellum). Source: Figure reproduced from reference 37, with permission from
John Wiley and Sons (License No. 5147660846875).
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Combination of Hydrogen Anatomical Information
Hydrogen MRI can provide an excellent SNR and a high res-
olution within a relatively short measurement time and is
often used to complement non-hydrogen MRI measurements
by providing anatomical references. Thus, there is naturally
great interest in employing hydrogen anatomical information
to improve the image quality of nonhydrogen MRI since
MRI images of the same body part obtained with different
MRI contrasts are highly correlated due to the same underly-
ing anatomy. Constantinides et al first proposed an iterative
reconstruction algorithm to enhance low-resolution sodium
MRI by incorporating high-resolution hydrogen MRI before
the onset of CS.76 While CS exploits the sparsity of non-
hydrogen MRI images to accelerate data acquisition, incorpo-
rating prior anatomical knowledge from hydrogen MRI into
the CS reconstruction algorithm provides further opportuni-
ties to improve image quality for non-hydrogen MRI, such as
phosphorus (31P),77 hyperpolarized helium (3He),78 and fluo-
rine (19F).79 Gnahm et al first introduced this concept to CS
sodium MRI by using a hydrogen support region constraint32

and further advanced it by adding an edge-weighting-based
constraint31 to exploit hydrogen anatomical information.
Accordingly, the constrained optimization problem of CS
(Eq. 7) is rewritten as:

where x is the iteratively generated image and bx is the
reconstructed image. λ1, λ2, and λ3 are the weighing factors
of data consistency constraint, edge-weighting-based anatomi-
cal constraint, and support region constraint, respectively.

D ið Þ
α denotes the derivative operator computing the ith-order

TV in α direction,80 weighted by τ. The second-order TV,

D 2ð Þ
α , is used to avoid patchy images because the first-order

TV, D 1ð Þ
α , tends to generate regions with constant inten-

sity.80,81 W α is the diagonal matrix containing anatomical
weighting factors ranging from 0 to 1 and is derived from

D 1ð Þ
α of a registered and normalized hydrogen MRI reference

image in α direction. BM is the diagonal matrix obtained
from a hydrogen image with 1 outside the object region and
0 inside. ℓ2�norm instead of ℓ1�norm is used in the third
term to minimize the signal intensities outside of the object,
leading to an increase in image quality.

However, in the presence of sodium-dependent novel
features (e.g. abnormality invisible in the hydrogen image),
the approach indicated in Eq. 9 can only achieve minimal
improvement in reconstructing these novel features and is
sensitive to interscan subject motion. To address these issues,
Zhao et al proposed an anatomically constrained reconstruc-
tion approach for sodium MRI that enables denoising and
resolution enhancement of shared features between hydrogen
and sodium images, meanwhile allowing motion correction
and recovery of the novel features that are present only in
sodium images (Fig. 5).69 The CS with hydrogen anatomical
constraints was shown to outperform NUFFT and the con-
ventional CS without hydrogen anatomical constraints. More-
over, it was shown to be particularly effective when the

hydrogen image reference shared similar structures with the
sodium image.15,31,32,38,69

It should be noted that the hydrogen anatomical informa-
tion that is not contained in sodium dataset can introduce artifi-
cial structures to the reconstructed sodium images. Thus, it is
critical that only reliable prior information is used for the ana-
tomical incorporation, such as object support region and lesions.

FIGURE 5: Simulated sodium MRI images with a lesion. (a) Ground truth image. (b–d) Images after adding complex Gaussian noise
reconstructed by (b) NUFFT, (c) conventional CS without anatomical constraints, and (d) CS with anatomical constraints. Source:
Figure reproduced from reference 69, with permission from John Wiley and Sons (License No. 5147661032006).
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x
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Combination of Parallel Imaging
Parallel imaging is an MRI acceleration technique that
exploits the properties of phased-array coils82 to assist the spa-
tial localization of the multichannel NMR signal sampled
below the Nyquist sampling rate.83 Two representative paral-
lel imaging techniques are used routinely in the clinic: SEN-
Sitivity Encoding (SENSE)21 and GeneRalised Partially
Parallel Acquisitions (GRAPPA).23 SENSE unfolds aliased
pixels in the image domain by using the prior knowledge of
coil sensitivity profiles. GRAPPA synthesizes missing data
points directly in k-space as a linear combination of the
acquired neighboring k-space points by implicitly employing
the coil sensitivity information calculated from a densely sam-
pled center region of the k-space data. Inspired by the high
accessibility of hydrogen-tuned phased-array coils, as well as
the similar purpose of parallel imaging and CS, extensive
research work has been carried out to synergistically combine
the two for further acceleration of hydrogen MRI.84–90 In
light of the increasing applications of sodium-tuned phased-
array coils,28,35,91,92 the combination of parallel imaging and
CS in sodium MRI to obtain faster scans and/or higher image
quality has aroused great interest. Lachner et al first proposed
an augmented CS reconstruction algorithm for sodium MRI
by utilizing the estimated coil sensitivity profiles.38 Given the
coil sensitivity for C channels: S i, i¼ 1,…,C , this algorithm
can be formulated as:

bx¼ arg min
x

λ
XC
i¼1

S iΦx� yi
�� ��2

2þ
X
i

τiRi xð Þ
( )

ð10Þ

where bx is the reconstructed image. The first term weighted
with λ ensures data consistency with comparison to the
acquired k-space data, yi, of channel i. The matrix, Φ, pro-
jects the iteratively reconstructed image, x, into k-space for
each channel, by multiplication with sensitivity maps S i. The
second term represents the incorporated regularizations, Ri,
weighted with τi, to enforce image sparsity and/or introduce
prior anatomical information. Lachner et al applied this
SENSE-based CS algorithm to reconstruct 14-channel
sodium breast datasets with a USF of 7.2, achieving further

improvements in image quality compared to NUFFT and CS
without SENSE (Fig. 6).38

In contrast to the hydrogen anatomical prior, parallel
imaging always delivers reliable information to further
improve CS performance by exploiting coil sensitivity pro-
files. Parallel imaging-based CS has shown encouraging results
both in hydrogen84–90 and sodium MRI.38 However, its
widespread use in sodium MRI is limited in practice due to
the extreme lack of access to sodium-tuned phased-array coils,
justifying the necessity of developing multichannel sodium-
tuned coils in the future.

Incorporation of Deep Learning
Deep learning is a popular postprocessing technique that
trains the brain-like multiple processing layers, known as arti-
ficial neural networks, to learn an off-line prior model from a
large amount of historical data. Although, at first glance, deep
learning might be regarded as a totally different technique
from CS, recent work has shown that the fundamentals of
deep learning are closely related to CS.93 To address the chal-
lenges of CS, such as long computation times and difficult
parameterization, CS has been recently extended to incorpo-
rate deep learning, enabling fast and accurate reconstruction
of undersampled k-space data. Wang et al took the lead in
applying deep learning to CS hydrogen MRI by training a
convolutional neural network to obtain a mapping from ret-
rospectively 5-fold undersampled to fully sampled k-space
data.94 This image reconstruction was achieved within
1 second. Lee et al adopted U-net,95 a deep convolutional
network consisting of a contracting path and an expansive
path, to extract features of aliasing artifacts and therefore
enable image reconstruction from sparsely sampled k-space
data instantly.96 Novel CS frameworks with high-efficient
data consistency constraints were proposed by leveraging gen-
erative adversarial networks for rapid and accurate image
reconstruction from highly undersampled MRI measure-
ments.97,98 Taking encouragement from the successes of deep
learning-based CS in hydrogen MRI,94,96–98 recent advances
have also addressed sodium MRI.39 Figure 7 illustrates an exam-
ple development procedure for a deep learning framework for

FIGURE 6: Sodium images of healthy female breasts with a USF of 7.2 at 7 T. Three images were reconstructed by (a) NUFFT, (b) CS
without SENSE, and (c) SENSE-based CS. Compared to NUFFT reconstruction. Both CS-based results show significant improvement
because of reduced noise and artifacts as well as resolved structures. In contrast to the CS algorithm without SENSE, the SENSE-
based CS algorithm yields further improvement due to the reduced blurring and well-preserved small structures. Source:
Figure reproduced from reference 38, with permission from Elsevier (License No. 5147661364797).
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sodium image reconstruction.39 Fully sampled k-space data sets
are first collected and then randomly divided into two sets, a
training set and a test set. The aliased images are produced by
incoherent undersampling retrospectively. In the training phase,
the reconstruction algorithm is designed, implemented, and
trained by feeding a large number of training datasets. The test
datasets are used to evaluate the performance of the final model
by comparing the reconstructed images with the fully sampled
ground truth images. The deep learning approach with con-
volutional neural networks based on a U-Net architecture was
proven to achieve sufficiently accurate image reconstruction for
4-fold incoherently undersampled sodium MRI with a total
computational time of less than 1 minute,39 further advancing
the real-time clinical application of sodium MRI.

Although incorporating deep learning into CS-based
reconstruction techniques for sodium MRI shows encourag-
ing results, several remaining challenges need to be addressed
before it can be widely used in clinical practice. First of all,
while CS has been proven to be a robust technique, deep
learning-based reconstruction methods run the risk of intro-
ducing false information, especially in unique pathological sit-
uations. Furthermore, although it might be feasible to
pretrain separate neural networks for different MRI exams,
the poor generalization of deep learning in the case of, for

example, different pulse sequence settings, MRI vendors,
magnetic field strengths, anatomy, or pathologies, is an obsta-
cle to its successful translation into clinical practice. Another
major disadvantage lies in the availability of specific training
and test datasets. The lack of a fully sampled dataset limits
the use of deep learning models in supervised training. Thus,
future research in an unsupervised training or scan-specific
way by leveraging, for example, generative adversarial net-
works is anticipated.

Evaluation
Researchers are faced with a critical obstacle: the difficulty of
evaluating the performance of various CS-based reconstruc-
tion techniques because the true evaluation of reconstruction
is based on the diagnostic value of the reconstructed images,
which clearly cannot be identified in a development cycle.
Thus, the undermentioned quantitative and qualitative
methods, as well as statistical analysis, are often used as
proxies.

The quantitative method is implemented to calculate
image metrics by comparing resulting images with ground
truth images obtained from fully sampled k-space data by
applying the NUFFT algorithm. Common image metrics

FIGURE 7: Diagrams showing an example development procedure for a deep learning framework for sodium MRI image
reconstruction. Fully sampled k-space datasets are first collected and then divided into two parts for training and test. (a) The
reconstruction algorithm is designed, built, and trained from a large number of training datasets. (b) The performance of the trained
reconstruction model is evaluated in the test phase. Source: Figure reproduced from reference 39, with permission from John Wiley
and Sons (License No. 5147670041968).
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include structural similarity (SSIM) based on degradation of
structural information,15,30,35,37,39,99 normalized root-mean-
square error (NRMSE) for measurement of numerical
similarity,33,34,38,65 SNR difference to ground truth,29,31,32,39,69

and peak SNR.37 Furthermore, quantitative sodium MRI
provides TSC that is connected to cellular integrity and
viability.3,4,100,101 Accordingly, the error of TSC to the ground
truth can be used as an image metric unique to sodium MRI
techniques.33,39

However, for the clinical establishment of a recon-
struction technique, its ability to enable the visualization
of specific pathologies and anatomical structures is much
more important to radiologists than a mathematical match
to a ground truth that might still be flawed. Therefore, a
qualitative evaluation of clinical studies with blinded grad-
ing of image quality by multiple radiologists is rec-
ommended.102 Image quality can be evaluated based on a
set of criteria, including overall image quality, perceived
SNR, image contrast, sharpness, residual artifacts, and
diagnostic confidence, with specifically defined scores rang-
ing from 1 (nondiagnostic) to 5 (excellent).39,102,103 How-
ever, even this is a proxy for a true evaluation of diagnostic
accuracy in clinical routine.

Provided that the number of consecutive scans is
statistically meaningful (usually greater than 20), statisti-
cal analysis can be performed to show the statistical dif-
ference between two sets of images or two reconstruction
approaches.14 Since image metrics (e.g. SSIM and TSC
error) regarding ground truth usually follow a normal
distribution, a paired Student’s t-test can be used to eval-
uate the statistical significance of image metrics obtained
from two reconstruction techniques.39 The difference in
terms of image quality scores between two sets of images
can be statistically assessed with a nonparametric statisti-
cal test, such as a Wilcoxon test, which can determine
whether the scores of two different reconstructions come
from the same distribution.102 Ideally, a CS-based recon-
struction algorithm for undersampled k-space data should
draw results from a distribution same as that of ground
truth images.

Clinical Applications
Sodium ion homeostasis in human biology is of great signifi-
cance in ensuring the proper functioning of a cell, as exempli-
fied by energy-consuming processes of membrane transport
using the sodium–potassium pump.5 Moreover, loss of
homeostasis is often a sign of disorders, such as multiple scle-
rosis11 and osteoarthritis.14 Quantitative sodium MRI is a
noninvasive way of providing novel biochemical markers that
can be used to detect pathological processes at an early stage
of the disease, benefitting diagnostic assessment, or for track-
ing changes in tissue viability in response to therapies, thus

aiding treatment planning. Given these applications, the
potential benefits of sodium MRI in clinical practice are clear.
However, the reliable measurement of quantitative values
with biological significance in the human body is com-
promised by a relatively low SNR, and the widespread clinical
use of sodium MRI remains prohibitively expensive due to
the long measurement times required to overcome this
drawback.

The ultimate goal of a CS-based sodium MRI technique
is to improve scanning speed and/or image quality for a par-
ticular application, such as brain imaging, musculoskeletal
imaging, or cartilage imaging, while maintaining diagnostic
accuracy. By leveraging in vivo datasets typically obtained
from healthy volunteers and sometimes a small number of
diseased subjects, the performance of the technique has been
demonstrated in a small set of proof-of-concept reconstruc-
tions. This section briefly summarizes in vivo applications
sorted by targeted anatomical regions or diseases, among
which various CS-based sodium MRI techniques hold clinical
promise.

The impacts of CS-based techniques on neuroimaging
using sodium MRI have been investigated by multiple groups
on healthy and/or diseased human brains.30–32,37,39,65,67,69

Blunck et al probed the effects of conventional CS on quanti-
tative sodium MRI on healthy human brains at 7 T by com-
paring three sparsity regularizations (Wavelet, DCT, and TV)
over USFs ranging from 1 to 10.30 It was found that CS
enabled undersampling up to a factor of 4 while maintaining
good image quality and high TSC quantification accuracy. In
cerebral stroke events, the inadequate oxygen supply results in
the energy-consuming failure of sodium-potassium pumps,
therefore breaking sodium homeostasis across cell membranes.
This leads to an increased TSC that can be measured by
sodium MRI, albeit at the cost of relatively long scan times,
to guide medical management decisions.13,104,105 In studies
of cerebral ischemic stroke using CS-based sodium MRI, a
scan time reduction by moderate undersampling has been
achieved with only minor degradation of image quality.39,65

Similarly, multiple sclerosis lesions show an elevated TSC that
might be the direct consequence of inflammatory and neuro-
degenerative processes. However, the metabolic basis for this
remains unclear.12,106,107 CS-based reconstruction approaches
have been employed to accelerate sodium MRI examinations
of multiple sclerosis while still preserving small anatomical
structures and producing only little lesion intensity error that
allows for relatively precise determination of TSC.31 Brain
tumors are included in the active role of sodium because the
energy-consuming process of sodium–potassium pumps has a
significant impact on tumor viability. An elevation in TSC
appears in brain tumors due to the increase in intracellular
sodium concentration and the enlargement of the extracellular
space.5,108 As shown in Fig. 8, the application of CS-based
reconstruction has significantly improved the image quality of
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TSC maps during the treatment of brain tumors. This indi-
cates the potential to improve the detection of spatially het-
erogeneous responses of tumors to treatment.69

Consistent with brain tumors, breast cancers exhibit a sig-
nificantly elevated TSC compared to glandular or fatty tis-
sue.16,109 Recent advances have shown that the application of
CS-based techniques in breast sodium MRI can significantly
shorten the acquisition time while preserving image quality.15,38

In skeletal muscle tissue, elevations in TSC have been
reported in diseases, such as myotonic dystrophy,110 muscular
channelopathy,111 diabetes,112 and hypertension.113 Accelera-
tion of musculoskeletal sodium MRI by virtue of CS recon-
struction with high quantification accuracy has also been
demonstrated.33,34

Sodium imaging of cartilage holds clinical promise
because it can facilitate the noninvasive quantification of gly-
cosaminoglycan content, which plays a key role in cartilage
homeostasis and is therefore considered as a potential bio-
marker for the clinical diagnosis of early osteoarthritis and the
assessment of cartilage repair tissue.114,115 A preliminary
study has demonstrated that CS-based reconstruction can
achieve faster, but still accurate, quantitative sodium imaging
of knee cartilage at 7 T, motivating further research and tech-
nical advance in the field of CS sodium MRI.29

In the human torso, simultaneous sodium imaging of
the lungs,116 heart,117,118 breasts,16,109,119 kidneys,17,120 and
intervertebral discs121 is of interest as it could provide invalu-
able insight into the metabolism in, for instance, lung
cancer,116 and acute kidney injury.17 However, quantitative
sodium torso MRI encounters additional challenges in terms
of measurement times due to a large field of view and artifacts
caused by cardiac pulsation and respiration. Fortunately, it
has been shown that sparse reconstruction can significantly
improve the image quality of human torso sodium images.36

Despite the great clinical potential, CS-based sodium
MRI techniques have not been widely adopted because, in
addition to the technical challenges such as long reconstruc-
tion times, significant clinical hurdles to extensive testing
remain, not to mention the adoption of these methods. First
of all, for complete validation of new imaging techniques,
their diagnostic accuracy in clinical routine has to be

demonstrated at a reduced measurement time, which is a
time-consuming and challenging process. Second, the imag-
ing community lacks experience with the artifacts caused by
CS-based reconstructions, which means that technologists or
radiologists may not be able to troubleshoot or even identify
the artifacts, thus leading to failure in diagnosis. Finally, test-
ing CS-based sodium MRI techniques against a clinical gold
standard could be problematic due to the difficulties associ-
ated with repeating some clinical exams, especially dynamic
contrast-enhanced series. Moreover, even if a repetition were
technically feasible, performing additional scans in a clinical
environment would be challenging due to the high cost of
MRI examinations and/or time constraints.

Future Prospects
Although the feasibility of various CS-based reconstruction
techniques in the field of sodium MRI has been demon-
strated in many scenarios, CS-based sodium MRI is an
emerging technique and remains an open area of interest to
researchers with great potential for further technological
advancement and clinical applications. In the following,
potential future prospects of these techniques are discussed.

As previously stated, mapping intracellular sodium is of
particular importance because it can reflect, for example, the
function of sodium–potassium pumps, while extracellular
sodium concentration is relatively insensitive to local changes
within an organ due to tissue perfusion. Several approaches
have been proposed for intracellular sodium weighted acquisi-
tions in human biology, such as inversion-recovery techniques
for suppression of the sodium signal from an aqueous
environment,122–124 and multiple-quantum filtering125–129

based on the assumption that triple-quantum-coherence
sodium NMR signal mostly originates from a restricted
(mainly intracellular) environment.19,20 Figure 9 presents the
single- and triple-quantum-filtered sodium images on a brain
tumor patient by applying an enhanced SISTINA tech-
nique.9,10,44 The brain tumor shows increased signal in the
single-quantum-filtered image and yet a decrease in the triple-
quantum-filtered image, indicating that multiple-quantum fil-
tering might have the potential to provide complementary

FIGURE 8: Hydrogen and sodium images of a brain tumor patient across radiation therapy. (a) Hydrogen MRI image on day
0 corresponding to the start of radiation treatment. (b–d) The TSC maps reconstructed with a CS-based method on (b) day
10, (c) day 24, and (d) day 45. (e) The TSC map reconstructed with NUFFT on day 10. The black crossing indicates the tumor
location. The CS-based method (b) outperforms NUFFT (e) in terms of image quality of TSC maps. Source: Figure reproduced from
reference 69, with permission from John Wiley and Sons (License No. 5147670179454).

1352 Volume 55, No. 5

Journal of Magnetic Resonance Imaging



information for diagnosis or medical treatment of some dis-
eases. However, these techniques suffer from even longer
acquisition times than conventional single-pulse sodium MRI
due to their generally large specific absorption rate require-
ments, thus arousing interest in the acceleration of intracellu-
lar sodium mapping while maintaining image quality by
using CS-based methods.

The electric quadrupole moment of the sodium nucleus
under the effects of local electric field gradients can result in a
biexponential transverse and longitudinal relaxation behavior,
and studies have shown that certain pathologies, for example,
brain tumors, can alter sodium relaxation times.123,130 Conse-
quently, the quantitation of sodium relaxometry might yield
valuable additional information in the assessment of diffuse
pathologies and potentially focal lesions. The sparse reconstruc-
tion of quantitative sodium relaxometry has been investigated
using MRF, and a relatively long scan duration of 32 minutes
has been reported for in vivo measurements, therefore limiting
its clinical applications.68,70 Hence, there is scope for CS-based
techniques to efficiently accelerate quantitative sodium
relaxometry.

Sodium dynamics have the potential to provide valuable
information given the significant role of transmembrane sodium
gradient in the regulation of neural activity and muscle action.4

A dynamic sodium MRI technique to extract sub-30 seconds
temporal information has been demonstrated but still suffers
from a relatively long measurement time of 20 minutes.45 Given
the encouraging results of CS in speeding up dynamic hydrogen
MRI, another important future prospect pertains to the accelera-
tion of dynamic sodium MRI by leveraging, for example, k-t
methods.84,131

As shown in Table 1, most of the CS sodium MRI
studies to date have employed radial k-space trajectories for
incoherent undersampling. Going forward, more efficient
non-Cartesian k-space trajectories, such as TPI40,41 or
FLORET,27 which have significantly higher SNR efficiency
than radial trajectories, can be implemented for sparser repre-
sentation of sodium MRI data, thus further accelerating
sodium imaging times.

Conclusion
Sodium MRI is an excellent candidate for CS-based tech-
niques because it naturally meets the fundamental require-
ments of CS in most cases, including transform sparsity and
incoherent undersampling. Both conventional and advanced
CS-based techniques have the potential to significantly
accelerate sodium MRI scans and/or improve sodium image
quality, thereby promoting the clinical applicability of
sodium MRI. The performance of conventional CS can be
further improved by introducing additional information,
such as anatomical information obtained from hydrogen
MRI, coil sensitivity information from phased-array coils, or
by combining efficient sparse representation methods, for
example, dictionary-based learning or deep learning. Given
that the diagnostic value of reconstructed images cannot be
assessed during the development cycle, proxies can be
employed to evaluate the performance of various CS-based
techniques, such as image metrics, subjective scoring, and
statistical analysis. A variety of studies on multiple anatomi-
cal regions and diseases have shown the clinical potential of
CS-based sodium MRI. Despite this, CS-based sodium MRI
is still in its infancy, and many crucial issues remain unset-
tled before its widespread application in clinical routines.
These include, but are not limited to: optimizing k-space
sampling trajectories, developing improved sparse represen-
tation methods, investigating the reconstruction quality in
terms of clinical significance, and shortening the reconstruc-
tion time. In the future, the clinical potential of CS-based
sodium MRI could be further explored by, for example,
accelerating the mapping of intracellular sodium, increasing
the speed of relaxometry quantification, speeding up
dynamic sodium MRI, and adopting advanced sampling
schemes.
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